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1 Introduction

This paper will consider a sliding square puzzle commonly known as the 15-Puzzle in group theory. The puzzle is
commonly, but incorrectly, attributed to Sam Loyd; An American chess player and puzzle author raised in New
York City (O’Connor and Robertson,2003). The actual inventor, Noyes Chapman, applied for a patent in March
1880 in the midst of its greatest popularity (Slocum, 2023).

The 15 puzzle consists of 15 numbered squares all placed in a 4x4 box leaving one position empty. The un-shuffled
initial position takes on the form:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

The challenge of the puzzle is to take some arbitrary board-state and return to the un-shuffled initial position. The
challenge set by Sam Loyd, known as the 14-15 puzzle, but will be known as the Evil Puzzle in this paper, comprised
of simply swapping the initial positions of the 14 & 15 numbered squares. An Example of which is shown below:

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

Loyd offered $1, 000 to anyone who could solve it (O’Connor and Robertson, 2003). However, he conveniently did
not mention that this particular board-state had been proven to be impossible in 1879 (Slocum, 2023).
The 15-Puzzle can be algebraically captured by Group theory and will be explained throughout this paper in its
full generality.

2 Definitions

Let P = {p1, p2, p3, ..., p16} denote the set of all pieces in the puzzle, where pi denotes the i’th numbered square.
We let p16 denote the empty square. Therefore, the un-shuffled initial position would take the form:

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12
p13 p14 p15 p16

Let C = {c1, c2, c3, ..., c16} denote the set of all cells in the 4x4 container in the following ”wiggly” order:

c4 c3 c2 c1
c5 c6 c7 c8
c12 c11 c10 c9
c13 c14 c15 c16
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Definition 2.1. A snapshot s : P → C is a bijection.

Definition 2.2. A configuration σ is a snapshot with σ(p16) = c16. So, in a configuration the blank is at the
lower-right corner.

Suppose δ takes on the form:

p2 p1 p3 p4
p5 p6 p7 p13
p14 p10 p11 p12
p8 p9 p15 p16

Then, δ is a configuration since δ(p16) = c16. This configuration is described by the permutation:

δ =

(
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16
c3 c4 c2 c1 c5 c6 c7 c13 c14 c11 c10 c9 c8 c12 c15 c16

)
The un-shuffled initial position and the Evil puzzle are also configurations. Let α and β denote these configurations
respectively. Then:

α =

(
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16
c4 c3 c2 c1 c5 c6 c7 c8 c12 c11 c10 c9 c13 c14 c15 c16

)

β =

(
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16
c4 c3 c2 c1 c5 c6 c7 c8 c12 c11 c10 c9 c13 c15 c14 c16

)
An example of a snapshot that is not a configuration:
Suppose µ takes on the form:

p2 p1 p3 p4
p5 p6 p7 p13
p14 p10 p11 p12
p8 p9 p16 p15

Then clearly we do not have a configuration since µ(p16) = c15.

Let S be the set of all snapshots.

Definition 2.3. A basic move m is a permutation in S16 such that s2 = m ◦ s1 for some s1, s2 ∈ S and m should
be “legal” in the sense that going from s1 to s2 should be obtained by exchanging the blank space p16 with one
of its neighbours by sliding the non-blank piece to the cell of the blank space (up,down,left,right whatever applies
depending on the cell). A move M is a finite sequence of basic moves and so as a permutation it is given by the
composition of the permutations defining the basic moves.

Let m1,m2,m3,m4 denote the basic moves up, down, left, right respectively. The following example will clearly
illustrate the four basic moves that will be used throughout the text.
Suppose we begin with the following setup s1:

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12
p13 p14 p16 p15

Then, suppose s2 is of the form:

p1 p2 p3 p4
p5 p6 p7 p8
p9 p11 p14 p12
p13 p10 p16 p15
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where s2 = M ◦ s1 = m1 ◦m3 ◦m2 ◦m4 ◦ s1. Since all elements not including the subset {p10, p11, p14, p16} were
unaffected, it would be easier to look only at this portion of the total board and run through each basic move
m ∈ M that resulted in s2.

p10 p11
p14 p16

m4→ p10 p11
p16 p14

m2→ p16 p11
p10 p14

m3→ p11 p16
p10 p14

m1→ p11 p14
p10 p16

Where m4 = (15, 14), m2 = (14, 11), m3 = (11, 10), m1 = (10, 15). Remember, the numbers in the permutations
indicate the cells and not the numbers on the blocks themselves since M : C → C .

Definition 2.4. Let s be a snapshot. Then we say σ = σs is the normalization of s if σ can be obtained from
s by a move moving the blank space, p16, all the way to the c16 following the wiggly trajectory i.e. in each basic
move in the composition of the move the index of the cell containing p16 increases by 1.

For example, consider the following snapshot s:

13 2 7 4
10 3 6 8
9 1 11
12 14 15 5

To go from this to its normalization we need 5 basic moves: slide p9 right, p12 up, then followed by sliding p14, p15
and p5 to the left. Its normalization would take on the form:

13 2 7 4
10 3 6 8
12 9 1 11
14 15 5

where:

σs =

(
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c16 c11 c12 c13 c14 c15

)
σs = (11, 16, 15, 14, 13, 12)

3 Theorems

Cayley’s Theorem implies that any group G is isomorphic to a group of permutations.

Theorem 3.1. The group S is isomorphic to the symmetric group S16

Proof. Since ∀ element a ∈ S, the snapshot takes on the form:

a =

(
p1 p2 · · · p15 p16
ci cj · · · ck cl

)
We can simply ignore the p and c notation in the element and find ourselves an element in S16 i.e. if f : S → S16

where f(a) = b Then b takes on the form:

b =

(
1 2 · · · 15 16
i j · · · k l

)

Theorem 3.2. The group of all configurations is isomorphic to the symmetric group S15

Proof. This proof is simply the same as Theorem 3.1, but we now have a fixed transposition where ∀ a ∈ S,
a(p16) = c16. Therefore, we can treat any configuration as a permutation of 15 pieces {p1, p2, · · · , p15} to cells
{c1, c2, · · · , c15}. Therefore, the group of all configurations is isomorphic to S15 for the same reasoning as before.
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Theorem 3.3. There exists a move taking a snapshot s to t if and only if there is a move taking the normalization
of the former, σ = σs to the normalization of the latter τ = τt.

Proof.

⇒ Suppose t = M ◦ s
For all s ∈ S, there exists a normalization σ such that σ = σs.
Let τt and σs denote the normalization for t and s respectively.
Then, t = M−1

t ◦ τt and s = M−1
s ◦ σs where Mt and Ms denote the move moving the blank space, p16, all

the way to c16 in their corresponding snapshots.
M−1

t ◦ τt = M ◦M−1
s σs

Left multiply both sides by Mt

therefore τt = Mt ◦M ◦M−1
s ◦ σs

The composition of Mt ◦M ◦M−1
s is a move that takes the normalization σs to τt.

⇐ Suppose τt = M ◦ σs

Where τt = Mt ◦ t and σs = Ms ◦ s
Then, Mt ◦ t = M ◦Ms ◦ s
Left multiply by M−1

t

∴ t = M−1
t ◦M ◦Ms ◦ s

The composition of M−1
t ◦M ◦Ms is a move that takes the snapshot s to t.

This completes the proof.

Corollary 3.3.1. Since for any normalization of a snapshot s, σs(p16) = c16, then σs is a configuration. As shown
by Theorem 3.3, any two snapshots s and t such that t = M ◦ s there must also exist a move that relates their
configurations. Therefore, we can solely inspect the set of configurations in order to solve the puzzle.

From now on, let’s restrict ourselves to the set of all moves between configurations only, let’s call this set M(C).

Theorem 3.4. Any move M ∈ M(C) can be characterized of the form: a = (16, im−1)(im−1, im−2)...(i2, i1)(i1, 16)
where ik is a neighbor of ik+1.

Proof. Since a move M ∈ M(C) simply moves the blank from c16 to c16 by some permutation, and any permutation
is comprised of a product of transpositions (where each transposition is a basic move m), then M must always take
on the form of a.

Lemma 3.1. M(C) is a subgroup of A15.

In order to prove that M(C) is a subgroup of A15, we must show the following: M(C) is a subset of A15, M(C) is
closed under composition of elements ∈ M(C), there exists an identity element, and finally that for any element a
∈ M(C) there also exists an inverse a−1 ∈ M(C).

Proof. For a given cell ci, all neighboring cells accessible via a legal basic move m is always of opposite parity.
Therefore, a move (not necessarily ∈ M(C)) from some cell ci to ck where i and k share the same parity is always
divisible by two. Since a move M ∈ M(C) move cell c16 to itself, it is therefore comprised of an even number of
transpositions.

The identity element is trivial, since the empty move ∈ M(C) acts as the identity element.

For a given element a ∈ M(C), the inverse simply swaps the order in which the transpositions are performed such
that if a = (16, im−1)(im−1, im−2)...(i2, i1)(16, i1) where ik is a neighbor of ik+1, then a−1 = (16, i1)(i2, i1)...
(im−1, im−2)(16, im−1) which is also even and therefore ∈ M(C).

The composition of elements a, b ∈ M(C) must always be even, given that the composition of even transpositions
is also even. For instance, suppose a takes N1 to N2 by N1 = a ◦N2 and b takes N2 to N3 by N2 = b ◦N3. Then,
the composition a ◦ b is a move where N1 = a ◦ b ◦N3 which is also even.

Proof Complete.

Corollary 3.4.1. Every configuration is an equivalence relation on the set of snapshots of order 16.
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Proof. Since for any snapshot s we can perform a normalization σ = σs, there exists a subset of snapshots
{s1, s2, ..., sn} that result in the same configuration. It is clear for a given snapshot, by moving the position of
the empty cell along the wiggly trajectory there are 16 distinct snapshots that all result in that same configuration
once normalized.

Remark. All moves between equivalence classes can be characterized by a finite product of transpositions of the
form a = (16, 15)(15, 14)...(j + 2, j + 1)(j, i)(i, i+ 1)...(15, 14)(16, 15) where a ∈ M(C).

Explanation
The generic characterization of these moves can be broken into three distinct sections; these three sections are
displayed by the orange, violet, and blue in the theorem. Remember, transposition composition are from right to
left, and so I will explain the setup for the characterization of moves ∈ M(C) in the opposite order.
Suppose we want to show the move between the two following configurations:

N1 =

13 2 7 4
10 3 6 8
12 9 1 11
14 15 5

N2 =

13 2 7 4
10 6 8 11
12 9 3 1
14 15 5

Step 1: Move the blank space along the wiggly trajectory to c11 by blue = (12, 11)(13, 12)(14, 13)(15, 14)(16, 15).

blue ◦N1 =

13 2 7 4
10 3 6 8
9 1 11
12 14 15 5

Step 2: Perform the basic move up not along the wiggle trajectory such that we enter our new set of snapshots
that relate by a different normalization, as seen by configuration N2 by violet = (11, 6).

violet ◦ blue ◦N1 =

13 2 7 4
10 6 8
9 3 1 11
12 14 15 5

Step 3: Perform the normalization that results in configurationN2 by orange = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)
(11, 10)(10, 9)(9, 8)(8, 7)(7, 6).

N2 = orange ◦ violet ◦ blue ◦N1 =

13 2 7 4
10 6 8 11
12 9 3 1
14 15 5

There are a total of 9 moves ∈ M(C) that results in the transition from one equivalence class to another. Let’s call
this subset ρ. See Appendix A for all moves, their inverses and their labels mi where 1 ≤ i ≤ 9.

Lemma 3.2. The group generated by the subset ρ contains all consecutive three-cycles (k, k + 1, k + 2) in A15.

(1, 2, 3) = (7, 6, 5, 4, 3, 2, 1)2(3, 4, 5)(1, 2, 3, 4, 5, 6, 7)2 = m2
7 ◦m−1

9 ◦m−2
7

(2, 3, 4) = (7, 6, 5, 4, 3, 2, 1)(3, 4, 5)(1, 2, 3, 4, 5, 6, 7) = m7 ◦m−1
9 ◦m−1

7

(3, 4, 5) = m−1
9

(4, 5, 6) = (1, 2, 3, 4, 5, 6, 7)(3, 4, 5)(7, 6, 5, 4, 3, 2, 1) = m−1
7 ◦m−1

9 ◦m7

(5, 6, 7) = (1, 2, 3, 4, 5, 6, 7)2(3, 4, 5)(7, 6, 5, 4, 3, 2, 1)2 = m−2
7 ◦m−1

9 ◦m2
7

(6, 7, 8) = (11, 10, 9, 8, 7, 6, 5)(7, 8, 9)(5, 6, 7, 8, 9, 10, 11) = m4 ◦m−1
6 ◦m−1

4

(7, 8, 9) = m−1
6

(8, 9, 10) = (5, 6, 7, 8, 9, 10, 11)(7, 8, 9)(11, 10, 9, 8, 7, 6, 5) = m−1
4 ◦m−1

6 ◦m4

(9, 10, 11) = (5, 6, 7, 8, 9, 10, 11)(7, 8, 9)(11, 10, 9, 8, 7, 6, 5) = m−2
4 ◦m−1

6 ◦m2
4
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(10, 11, 12) = (15, 14, 13, 12, 11, 10, 9)(11, 12, 13)(9, 10, 11, 12, 13, 14, 15) = m1 ◦m−1
3 ◦m−1

1

(11, 12, 13) = m−1
3

(12, 13, 14) = (9, 10, 11, 12, 13, 14, 15)(11, 12, 13)(15, 14, 13, 12, 11, 10, 9) = m−1
1 ◦m−1

3 ◦m1

(13, 14, 15) = (9, 10, 11, 12, 13, 14, 15)(11, 12, 13)(15, 14, 13, 12, 11, 10, 9) = m−2
1 ◦m−1

3 ◦m2
1

Theorem 3.5. All consecutive three-cycles generate An for n ≥ 3.

Proof. We will proceed by induction. For A3, it is trivially clear that since An = {i, (1, 2, 3), (1, 3, 2)} then the subset
of consecutive three-cycles (i.e. (1, 2, 3)) generates the whole set since (1, 2, 3)2 = (1, 3, 2) and (1, 2, 3)3 = i. Suppose
that An is generated by consecutive three-cycles. Then, we must prove that this also holds for the alternating group
An+1.
Suppose there exists a permutation σ in An+1. If σ(n+ 1) = n+ 1, then σ is also in An since n+ 1 maps to itself
and therefore it is a product of consecutive three-cycles. Alternatively, suppose σ(n + 1) = a where a < n + 1.
Then, by another permutation α(a) = n where α is an element in An (we know α exists since An is transitive). If
b = (n− 1, n, n+1) ◦α ◦σ, b must be an element in An since n+1 maps to itself. Therefore, by our same reasoning
as earlier, b is a product of consecutive three-cycles. By re-arranging for σ we obtain σ = α−1 ◦ (n+1, n, n− 1) ◦ b.
Since α & b are in An, then it is clear that σ is generated via a composition of consecutive three-cycles.
Proof Complete.

Corollary 3.5.1. M(C) = An.

Proof. Since Lemma 3.2 and 3.5 we can deduce that sinceM(C) contains all consecutive three-cycles that generate
An, and in Lemma 3.1 we had shown that M(C) is a subgroup of An, then it must hold that M(C) = An.

Theorem 3.6. For n ≥ 3, the three-cycles generate An

Proof. Using (Conrad, 2023) we can prove the given theorem.
The identity element e ∈ AN is simply the product of any two three-cycle element a ∈ An and its inverse.
For a non-identity element b ∈ An, we can write it as a product of even transpositions such that: b = a1 ◦a2 ◦ ...◦ak
where ai denotes a transposition and k is an even number. We will now show that every product of two transposi-
tions ∈ An is a product of two three-cycles and such b must be a product of three-cycles. There are three cases we
must ensure result in a product of two three-cycles, as shown below:
Case 1: Suppose ai and ai+1 are equal.
Then, the composition of these two transpositions equal the identity, which we can replace with (1, 2, 3)(1, 3, 2), a
product of two three-cycles.
Case 2: Suppose ai and ai+1 have only one element in common.
Then, the composition of the two transpositions will take the following form: ai ◦ ai+1 = (a, c)(a, d) = (a, d, c).
Case 3: Suppose ai and ai+1 share no two elements in common.
Then, the composition of these two transpositions will take the following form: ai ◦ ai+1 = (a, c)(d, e) =
(a, c)(c, d)(c, d)(d, e) = (c, d, a)(d, e, c) where a ̸= c ̸= e ̸= d, a product of two three-cycles.

Since, in all three cases, we can compose all two transpositions as a product of two three-cycles then ∀ b ∈ An, b
can be made as a product of three-cycles (Conrad, 2023).

Theorem 3.7. A puzzle is solvable if and only if the required permutation defining the move between the normal-
ization of the given puzzle and the initial setup is even.

Proof.

⇒ Suppose a puzzle is solvable
For a puzzle to be solvable, there must exist a move M taking the given puzzle (snapshot) s to the un-shuffled
initial position. Let us call this un-shuffled initial position t. Then, by 3.3, ∃ a move taking the normalization of the
former, σs, to the latter τt. This move must therefore exist ∈ M(C). Since by 3.5.1 M(C) = An, the permutation
between σs and τt must be even.

⇐ suppose the required permutation between the normalization of the given puzzle and the initial setup is even.
Therefore, the required permutation is ∈ An = M(C). Then, given 3.3 there exists a move between the given
puzzle s and the initial position t. The puzzle is solvable.
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To further concrete the material covered, let’s look at some examples. Note, we will be omitting the pi and ck
notation from the permutations that signify snapshots.
Suppose we have the following snapshot s, and we want to solve the puzzle by returning to the un-shuffled initial
position, t.

2 10 3 4
1 9 6 8
5 7 12
13 14 11 15

s =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5 4 2 1 12 7 10 8 6 3 15 9 13 14 16 11

)
s = (1, 5, 12, 9, 6, 7, 10, 3, 2, 4)(11, 15, 16)

We can normalize s by

Ms =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 16 11 12 13 14 15

)
Ms = (11, 16, 15, 14, 13, 12)

Which provides the following snapshot σs:

2 10 3 4
1 9 6 8
13 5 7 12
14 11 15

Where σs = Ms ◦ s.

Since t = τt where τt is the normalization of t, then M such that τt = M ◦ σs must be even given 3.7.

M =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 11 3 4 12 6 8 9 7 5 13 14 10 15 16

)
M = (3, 11, 5, 4)(6, 12, 13, 14, 10, 7)

M = (16, 15)(15, 10)(10, 7)(7, 6)(11, 6)(12, 11)(12, 5)(5, 4)(4, 3)(6, 3)(11, 6)(12, 11)(12, 13)(14, 13)(15, 14)(16, 15)

At this stage it is clear that M is comprised of 16 transpositions, an even number. Therefore, it is possible to solve
this puzzle.

On the other hand, suppose we are dealt the initial snapshot l:

1 2 3 4
6 5 8 7
9 10 11 12
14 13 15

Where clearly l = λl where λl is the normalization of l. Then the move from λl to τt is given by the odd permutation:

M = (6, 5)(8, 7)(14, 13)

Where M /∈ A15 and therefore by 3.7 impossible to solve.

4 Conclusion

We now have the full picture. It is evident that the required permutation M from the Evil Puzzle, s, to the un-
shuffled initial position t, takes the form M = (15, 14) such that t = M ◦ s. It is evident that M /∈ A15 given that
M is odd, and by 3.5.1, M therefore does not exist in M(C). By 3.7, we can finally conclude that the Evil Puzzle
is unsolvable. Hence, Loyd would never have to pay the $1,000 to the unsuspecting American public. By the same
reason of thinking, we can generalize this result. Suppose we begin from a snapshot a and wish to move to some
new snapshot b. So long as the parity of the cells containing piece p16 are the same, there will exist an even move
between the normalization of a and b and therefore it is possible to move between the two.
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5 Appendix A

m1 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(16, 9) = (15, 14, 13, 12, 11, 10, 9)

m2 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(15, 10)(16, 15) = (14, 13, 12, 11, 10)

m3 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(14, 11)(15, 14)(16, 15) = (13, 12, 11)

m4 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(9, 8)(8, 7)(7, 6)(6, 5)(12, 5)(13, 12)(14, 13)(15, 14)(16, 15) =
(11, 10, 9, 8, 7, 6, 5)

m5 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(9, 8)(8, 7)(7, 6)(11, 6)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) =
(10, 9, 8, 7, 6)

m6 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(9, 8)(8, 7)(10, 7)(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) =
(9, 8, 7)

m7 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(9, 8)(8, 7)(7, 6)(6, 5)(5, 4)(4, 3)(3, 2)(2, 1)(8, 1)(9, 8)(10, 9)
(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (7, 6, 5, 4, 3, 2, 1)

m8 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(9, 8)(8, 7)(7, 6)(6, 5)(5, 4)(4, 3)(3, 2)(7, 2)(8, 7)(9, 8)(10, 9)
(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (6, 5, 4, 3, 2)

m9 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(9, 8)(8, 7)(7, 6)(6, 5)(5, 4)(4, 3)(6, 3)(7, 6)(8, 7)(9, 8)(10, 9)
(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (5, 4, 3)

m−1
1 = (16, 9)(10, 9)(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (9, 10, 11, 12, 13, 14, 15)

m−1
2 = (16, 15)(15, 10)(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (10, 11, 12, 13, 14)

m−1
3 = (16, 15)(15, 14)(14, 11)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (11, 12, 13))

m−1
4 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 5)(6, 5)(7, 6)(8, 7)(9, 8)(10, 9)(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) =

(5, 6, 7, 8, 9, 10, 11)

m−1
5 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 6)(7, 6)(8, 7)(9, 8)(10, 9)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15)

= (6, 7, 8, 9, 10)

m−1
6 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 7)(8, 7)(9, 8)(10, 9)(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15)

= (7, 8, 9)

m−1
7 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(9, 8)(8, 1)(2, 1)(3, 2)(4, 3)(5, 4)(6, 5)(7, 6)(8, 7)(9, 8)(10, 9)

(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (1, 2, 3, 4, 5, 6, 7)

m−1
8 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(9, 8)(8, 7)(7, 2)(3, 2)(4, 3)(5, 4)(6, 5)(7, 6)(8, 7)(9, 8)(10, 9)

(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (2, 3, 4, 5, 6)

m−1
9 = (16, 15)(15, 14)(14, 13)(13, 12)(12, 11)(11, 10)(10, 9)(9, 8)(8, 7)(7, 6)(6, 3)(4, 3)(5, 4)(6, 5)(7, 6)(8, 7)(9, 8)(10, 9)

(11, 10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (3, 4, 5)
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