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1 Introduction

This paper will consider a sliding square puzzle commonly known as the 15-Puzzle in group theory. The puzzle is
commonly, but incorrectly, attributed to Sam Loyd; An American chess player and puzzle author raised in New
York City (O’Connor and Robertson,2003). The actual inventor, Noyes Chapman, applied for a patent in March
1880 in the midst of its greatest popularity (Slocum, 2023).

The 15 puzzle consists of 15 numbered squares all placed in a 4x4 box leaving one position empty. The un-shuffled
initial position takes on the form:

1 2|13 |4
516 | 718
9 (10| 11 | 12
13114 | 15

The challenge of the puzzle is to take some arbitrary board-state and return to the un-shuffled initial position. The
challenge set by Sam Loyd, known as the 14-15 puzzle, but will be known as the Evil Puzzle in this paper, comprised
of simply swapping the initial positions of the 14 & 15 numbered squares. An Example of which is shown below:

1 213 |4
5|1 6| 718
9 (10| 11 | 12
13115 | 14

Loyd offered $1,000 to anyone who could solve it (O’Connor and Robertson, 2003). However, he conveniently did
not mention that this particular board-state had been proven to be impossible in 1879 (Slocum, 2023).

The 15-Puzzle can be algebraically captured by Group theory and will be explained throughout this paper in its
full generality.

2 Definitions

Let P = {p1,p2,Dp3,...,p16} denote the set of all pieces in the puzzle, where p; denotes the i’th numbered square.
We let p1g denote the empty square. Therefore, the un-shuffled initial position would take the form:

b1 b2 P3 P4
Ps | Pe | P71 | P8
Po | Pio | P11 | P12
P13 | P14 | P15 | P16

Let C = {c1,c¢2,¢3,...,c16} denote the set of all cells in the 424 container in the following "wiggly” order:

Cq C3 C2 C1
C5 C6 c7 C8

C12 | C11 | C10 C9
C13 | C14 | C15 | Ci16




Definition 2.1. A snapshot s: P — C is a bijection.

Definition 2.2. A configuration o is a snapshot with o(p1g) = c16. So, in a configuration the blank is at the
lower-right corner.

Suppose § takes on the form:

D2 b1 P3 P4
Ps De P7r | P13
P14 | P1o | P11 | P12
Ps P9 | P15 | P16

Then, ¢ is a configuration since §(p16) = c16. This configuration is described by the permutation:

5= pP1 P2 P3 P4 P5 Pe Pt P8 P9 Pio P11 P12 P13 Pia  Pis  Pie
C3 € C2 C1 C3 Cg Cr C13 Ci4 Ci1  Cir0 C9 C8 C12 Ci5 Ci6

The un-shuffled initial position and the Evil puzzle are also configurations. Let oo and S denote these configurations
respectively. Then:

ow—( Pr P2 Ps P+ P5 Pe PT P8 P9 Po P P12 P13 P4 P15 Pie
4 €3 € € ¢ C Cr Cg Cl2 Ci1 Clo Co €13 Ci4 Ci5  Cle

B = pr p2 p3 P4+ P5s Pe Pr P8 P9 Pio Pu1 P12 P13 P14 P15 Pi6
€4 €3 C2 € € C €7 €8 Ci2 €11 €0 €9 €13 €15 Ci4 Ci6

An example of a snapshot that is not a configuration:
Suppose u takes on the form:

D2 b1 b3 P4
Ds Ps Pr | P13
P14 | P1o | P11 | P12
DPs Po | P16 | P15

Then clearly we do not have a configuration since p(pig) = c15.

Let S be the set of all snapshots.

Definition 2.3. A basic move m is a permutation in Sig such that ss = m o sy for some s, s5 € S and m should
be “legal” in the sense that going from s; to sy should be obtained by exchanging the blank space pig with one
of its neighbours by sliding the non-blank piece to the cell of the blank space (up,down,left,right whatever applies
depending on the cell). A move M is a finite sequence of basic moves and so as a permutation it is given by the
composition of the permutations defining the basic moves.

Let my, ms, m3, my denote the basic moves up, down, left, right respectively. The following example will clearly
illustrate the four basic moves that will be used throughout the text.
Suppose we begin with the following setup si:

b1 D2 P3 P4
Ds Ps pr Ps
P9 | Pio | P11 | P12
P13 | P14 | P16 | P15

Then, suppose s is of the form:

P1 P2 P3 P4
D5 y4s pr ps
Po | P11 | P14 | P12
P13 | Pio | P16 | P15




where so = M o s; = mq 0omg omgomy o s. Since all elements not including the subset {pi0,p11, P14, P16} Were
unaffected, it would be easier to look only at this portion of the total board and run through each basic move
m € M that resulted in ss.

Pio | P11 my Pio | P11 me P16 | P11 m P11 | Pie my P11 | P14
P14 | P16 Pie | P14 Pio | P14 Pio | P14 Pio | P16

Where my = (15,14), me = (14,11), ms = (11, 10), m; = (10,15). Remember, the numbers in the permutations
indicate the cells and not the numbers on the blocks themselves since M : C — C .

Definition 2.4. Let s be a snapshot. Then we say ¢ = o, is the normalization of s if ¢ can be obtained from
s by a move moving the blank space, pig, all the way to the c¢ig following the wiggly trajectory i.e. in each basic
move in the composition of the move the index of the cell containing pi¢ increases by 1.

For example, consider the following snapshot s:

131271 4
101 3 |6 | 8
9 1|11
12 114 | 15| 5

To go from this to its normalization we need 5 basic moves: slide pg right, pi2 up, then followed by sliding p14, p15
and ps to the left. Its normalization would take on the form:

1312 (7] 4
10 3 |61 8
1219 | 1|11
14 [ 15 |5

where:

i Ci € €3 €4 C3 Cg Cr Cg Cg Cio Ci11 Ci2 C13 Ci4 Ci5 Cig
s =
Cih €2 €3 €4 C5 C Cr Cg Cg Cio Cig Ci1 Ci2 Ci3 Cia C15

o, = (11,16,15,14,13,12)

3 Theorems
Cayley’s Theorem implies that any group G is isomorphic to a group of permutations.
Theorem 3.1. The group S is isomorphic to the symmetric group Sig
Proof. Since V element a € S, the snapshot takes on the form:

a—= [ Pr P2 0 P15 P16

C; Cj ce Ck C

We can simply ignore the p and ¢ notation in the element and find ourselves an element in Sig i.e. if f:.5 — Sy
where f(a) = b Then b takes on the form:

y_ (1 2 - 15 16
“\i o o ko

Theorem 3.2. The group of all configurations is isomorphic to the symmetric group Sis

Proof. This proof is simply the same as Theorem 3.1, but we now have a fixed transposition where V a € S,

a(p1s) = c16. Therefore, we can treat any configuration as a permutation of 15 pieces {p1,p2, - ,p15} to cells

{c1,¢2, - ,c15}. Therefore, the group of all configurations is isomorphic to Si5 for the same reasoning as before.
O



Theorem 3.3. There exists a move taking a snapshot s to t if and only if there is a move taking the normalization
of the former, o = o, to the normalization of the latter T = 7.

Proof.

= Supposet =M o s
For all s € S, there exists a normalization o such that ¢ = 0.
Let 7+ and o, denote the normalization for ¢ and s respectively.
Then, t = Mt_1 o7y and s = M ! oo, where M; and M, denote the move moving the blank space, pig, all
the way to ¢y in their corresponding snapshots.
M or, = Mo Mo,
Left multiply both sides by M;
therefore 7, = My o M o M ! oo,

The composition of M; o M o M; ! is a move that takes the normalization o to 7.

< Suppose 7z = M o o,
Where 1, = Mot and oy = Mo s
Then, Myot=MoMgos
Left multiply by M, !
S t=M;'oMoM,os
The composition of M, ! o M o My is a move that takes the snapshot s to t.
This completes the proof.

O

Corollary 3.3.1. Since for any normalization of a snapshot s, o5(p1s) = c16, then oy is a configuration. As shown
by Theorem 3.3, any two snapshots s and ¢ such that ¢ = M o s there must also exist a move that relates their
configurations. Therefore, we can solely inspect the set of configurations in order to solve the puzzle.

From now on, let’s restrict ourselves to the set of all moves between configurations only, let’s call this set M (C).

Theorem 3.4. Any move M € M(C) can be characterized of the form: a = (16, %m—1)(Em—1, tm—2)-..(42,%1) (i1, 16)
where iy s a neighbor of ix41.

Proof. Since a move M € M (C) simply moves the blank from ¢y to ¢16 by some permutation, and any permutation
is comprised of a product of transpositions (where each transposition is a basic move m), then M must always take
on the form of a. O

Lemma 3.1. M(C) is a subgroup of Ass.

In order to prove that M(C') is a subgroup of Ay5, we must show the following: M (C) is a subset of 415, M(C) is
closed under composition of elements € M (C'), there exists an identity element, and finally that for any element a
€ M(C) there also exists an inverse a~! € M(C).

Proof. For a given cell ¢;, all neighboring cells accessible via a legal basic move m is always of opposite parity.
Therefore, a move (not necessarily € M (C)) from some cell ¢; to ¢, where ¢ and k share the same parity is always
divisible by two. Since a move M € M (C) move cell ¢3¢ to itself, it is therefore comprised of an even number of
transpositions.

The identity element is trivial, since the empty move € M (C) acts as the identity element.

For a given element a € M (C), the inverse simply swaps the order in which the transpositions are performed such
that if a = (16,4,1)(im—1,im—_2)...(i2,41) (16,4, ) where i), is a neighbor of iy, then a=t = (16,y)(iz, i1)...
(4m—1,%m—2)(16,i,,—1) which is also even and therefore € M(C).

The composition of elements a,b € M(C) must always be even, given that the composition of even transpositions
is also even. For instance, suppose a takes N1 to No by N3 = a o Ny and b takes Ny to N3 by No = bo N3. Then,
the composition a o b is a move where N; = a o b o N3 which is also even.

Proof Complete. O

Corollary 3.4.1. Every configuration is an equivalence relation on the set of snapshots of order 16.



Proof. Since for any snapshot s we can perform a normalization ¢ = o, there exists a subset of snapshots
{s1, 82, ..., 8»} that result in the same configuration. It is clear for a given snapshot, by moving the position of
the empty cell along the wiggly trajectory there are 16 distinct snapshots that all result in that same configuration
once normalized. O

Remark. All moves between equivalence classes can be characterized by a finite product of transpositions of the

form a = (7,9) (4,3 4+ 1)...(15,14)(16, 15) where a € M(C).

Ezplanation

The generic characterization of these moves can be broken into three distinct sections; these three sections are
displayed by the , violet, and blue in the theorem. Remember, transposition composition are from right to

left, and so I will explain the setup for the characterization of moves € M(C) in the opposite order.
Suppose we want to show the move between the two following configurations:

B[ 2]7] 4 B 27 4

10 3]6] 8 106 |8]11
M =75 9 [ 111 Na =5 9 [ 3] 1

14155 14155

Step 1: Move the blank space along the wiggly trajectory to ¢11 by blue = (12,11)(13,12)(14,13)(15,14)(16, 15).

1312 17| 4
10 316 |8
9 1|11
12 114 15| 5

blueo Ny =

Step 2: Perform the basic move up not along the wiggle trajectory such that we enter our new set of snapshots
that relate by a different normalization, as seen by configuration Ny by violet = (11, 6).

131 2 7|4
10 6 | 8
9 | 3 1|11
12114 | 15| 5

violet o blue o N1 =

Step 3: Perform the normalization that results in configuration Ny by

1312 (7] 4
Ny = o violet o blue o N1 = 12 S g 111
14|15 |5

There are a total of 9 moves € M (C) that results in the transition from one equivalence class to another. Let’s call
this subset p. See Appendix A for all moves, their inverses and their labels m; where 1 <1 < 9.

Lemma 3.2. The group generated by the subset p contains all consecutive three-cycles (k,k + 1,k + 2) in Ajs.

(1,2,3) = (7,6,5,4,3,2,1)2(3,4,5)(1,2,3,4,5,6,7)2 = m% omg * om; >
2.3,4) = 76543,2,1 3,4,5)(1,2,3,4,5,6,7) = m7omg om3!

( 9 7

(37 9 ) m9

4,5,6 1,2,3,4,5,6,7)(3,4,5)(7,6,5,4,3,2,1) =m>omg L om
(7)(7 )(7a)(7777a7) 7 9 7
(5,6,7) = (1,2,3,4,5,6,7)%(3,4,5)(7,6,5,4,3,2,1)2 = mz 2 omg ' om?
(6 7,8) = (11,10,9,8,7,6,5)(7,8,9)(5,6,7,8,9,10,11) = my o mg ' om;*
(7,8,9) = mg*

(8,9,10) = (5,6,7,8,9,10,11)(7,8,9)(11,10,9,8,7,6,5) = m; ' omg ' omy
9,10,11) = (5,6,7,8,9,10,11)(7,8,9)(11,10,9,8,7,6,5) = m; 2 om; ' om?
( 4 6 4



10,11,12) = (15,14, 13,12,11,10,9)(11,12,13)(9,10,11,12,13,14,15) = my omz " om "
( ) ) ) ) ) 9 9 9 9 9 3 1
(11,12,13) = m3 "

(12,13,14) = (9,10,11,12,13,14,15)(11,12,13)(15,14,13,12,11,10,9) = m; " omz ' o my
(

13,14,15) = (9,10,11,12,13,14,15)(11,12,13)(15, 14, 13,12,11,10,9) = m; 2 o m3 * o m?
Theorem 3.5. All consecutive three-cycles generate A, for n > 3.

Proof. We will proceed by induction. For Ag, it is trivially clear that since A,, = {i, (1,2, 3), (1, 3,2)} then the subset
of consecutive three-cycles (i.e. (1,2,3)) generates the whole set since (1,2,3)% = (1,3,2) and (1,2,3)® = i. Suppose
that A, is generated by consecutive three-cycles. Then, we must prove that this also holds for the alternating group
An+1 .

Suppose there exists a permutation o in A, 4+1. If o(n+ 1) =n+ 1, then o is also in A, since n + 1 maps to itself
and therefore it is a product of consecutive three-cycles. Alternatively, suppose o(n + 1) = a where a < n + 1.
Then, by another permutation «(a) = n where « is an element in A,, (we know « exists since A,, is transitive). If
b=(n—1,n,n+1)oaoo, b must be an element in A,, since n+ 1 maps to itself. Therefore, by our same reasoning
as earlier, b is a product of consecutive three-cycles. By re-arranging for o we obtain ¢ = a=to(n+1,n,n—1)ob.
Since « & b are in A,,, then it is clear that ¢ is generated via a composition of consecutive three-cycles.

Proof Complete. O

Corollary 3.5.1. M(C) = A,.

Proof. Since Lemma 3.2 and 3.5 we can deduce that since M (C') contains all consecutive three-cycles that generate
A,, and in Lemma 3.1 we had shown that M (C) is a subgroup of A,,, then it must hold that M (C) = A,. O

Theorem 3.6. For n > 3, the three-cycles generate A,

Proof. Using (Conrad, 2023) we can prove the given theorem.

The identity element e € Ay is simply the product of any two three-cycle element a € A,, and its inverse.

For a non-identity element b € A,,, we can write it as a product of even transpositions such that: b = a;cago...0ay
where a; denotes a transposition and k is an even number. We will now show that every product of two transposi-
tions € A,, is a product of two three-cycles and such b must be a product of three-cycles. There are three cases we
must ensure result in a product of two three-cycles, as shown below:

Case 1: Suppose a; and a;+1 are equal.

Then, the composition of these two transpositions equal the identity, which we can replace with (1,2,3)(1, 3,2), a
product of two three-cycles.

Case 2: Suppose a; and a; 1 have only one element in common.

Then, the composition of the two transpositions will take the following form: a; o a;+1 = (a,¢)(a,d) = (a,d, ¢).
Case 3: Suppose a; and a;41 share no two elements in common.

Then, the composition of these two transpositions will take the following form: a; o a;1+1 = (a,c)(d,e) =
(a,c)(c,d)(c,d)(d,e) = (¢,d,a)(d, e, c) where a # ¢ # e # d, a product of two three-cycles.

Since, in all three cases, we can compose all two transpositions as a product of two three-cycles then V b € A,, b
can be made as a product of three-cycles (Conrad, 2023). O

Theorem 3.7. A puzzle is solvable if and only if the required permutation defining the move between the normal-
1zation of the given puzzle and the initial setup is even.

Proof.

= Suppose a puzzle is solvable
For a puzzle to be solvable, there must exist a move M taking the given puzzle (snapshot) s to the un-shuffled
initial position. Let us call this un-shuffled initial position ¢. Then, by 3.3, 3 a move taking the normalization of the
former, o, to the latter 7. This move must therefore exist € M(C). Since by 3.5.1 M(C) = A, the permutation
between o, and 7, must be even.

< suppose the required permutation between the normalization of the given puzzle and the initial setup is even.
Therefore, the required permutation is € A,, = M(C). Then, given 3.3 there exists a move between the given
puzzle s and the initial position ¢t. The puzzle is solvable. O



To further concrete the material covered, let’s look at some examples. Note, we will be omitting the p; and cg
notation from the permutations that signify snapshots.

Suppose we have the following snapshot s, and we want to solve the puzzle by returning to the un-shuffled initial
position, t.

2 110 3 | 4
1 9|16 |8
5 7|12
13114 |11 | 15

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
=5 4 2 1 12 7 10 8 6 3 15 9 13 14 16 11

s=(1,5,12,9,6,7,10,3,2,4)(11, 15, 16)

We can normalize s by

M_12345678910111213141516
s 1 2 3 4 5 6 7 8 9 10 16 11 12 13 14 15
M, = (11,16,15,14,13,12)
Which provides the following snapshot o,:
2 10| 3| 4
119|638
1315 | 7 |12
14 | 11 | 15

Where o, = M, o s.

Since t = 7 where 73 is the normalization of ¢, then M such that » = M o o5, must be even given 3.7.

M_12345678910111213141516
A1 2 11 3 4 12 6 8 9 7 5 13 14 10 15 16

M = (3,11,5,4)(6,12,13,14,10,7)
M = (16,15)(15,10)(10,7)(7,6)(11,6)(12,11)(12,5)(5,4)(4, 3)(6,3)(11,6)(12,11)(12,13)(14, 13)(15, 14)(16, 15)
At this stage it is clear that M is comprised of 16 transpositions, an even number. Therefore, it is possible to solve
this puzzle.

On the other hand, suppose we are dealt the initial snapshot I:

1 213 |4
6 | 5|8 ]| 7
9 (10| 11 | 12
14 | 13 | 15

Where clearly I = A; where J; is the normalization of [. Then the move from A; to 7; is given by the odd permutation:
M = (6,5)(8,7)(14,13)
Where M ¢ A;5 and therefore by 3.7 impossible to solve.

4 Conclusion

We now have the full picture. It is evident that the required permutation M from the Fwil Puzzle, s, to the un-
shuffled initial position ¢, takes the form M = (15,14) such that t = M o s. It is evident that M ¢ A5 given that
M is odd, and by 3.5.1, M therefore does not exist in M (C). By 3.7, we can finally conclude that the Evil Puzzle
is unsolvable. Hence, Loyd would never have to pay the $1,000 to the unsuspecting American public. By the same
reason of thinking, we can generalize this result. Suppose we begin from a snapshot a and wish to move to some
new snapshot b. So long as the parity of the cells containing piece pig are the same, there will exist an even move
between the normalization of ¢ and b and therefore it is possible to move between the two.



5 Appendix A

my = (16,15)(15, 14) (14, 13)(13,12)(12. 11)(11.10)(10.9)(16,9) = (15, 14,13,12, 11, 10, 9)
ma = (16,15)(15, 14)(14,13)(13.12)(12. 11)(11. 10)(15,10)(16, 15) = (14, 13,12, 11, 10)
mg = (16.15)(15, 14)(14,13)(13,12)(12, 11)(14, 11)(15, 14)(16, 15) = (13,12, 11)

mg = (16,15)(15,

5, 14) (14, 13)(13,12) (12, 11)(11, 10)(10,9)(9, 8)(8,7)(7.6)(6.5)(12, 5)(13,12)(14, 13) (15, 14)(16, 15) =
(11,10,9,8,7,6,5)

= (16, 15)(15, 14)(14,13)(13,12) (12, 11) (11, 10)(10,9)(9. 8)(8, 7)(7.6)(11,6)(12, 11)(13,12)(14, 13)(15, 14) (16, 15) =
(10,9,8,7,6)

me = (16,15)(15, 14) (14, 13)(13.12)(12. 11)(11.10)(10. 9)(9. 8)(8, 7)(10,7)(11, 10)(12, 11)(13, 12) (14, 13)(15, 14)(16, 15) =
(9,8,7)

mr = (16,15)(15,14)(14,13)(13,12)(12,11)(11,10)(10,9)(9, 8)(8, 7)(7, 6)(6,5)(5, 4)(4, 3)(3,2)(2, 1)(8, 1)(9, 8)(10, 9)
(11,10)(12,11)(13,12)(14, 13)(15, 14)(16, 15) = (7,6,5,4,3,2,1)

ms = (16,15)(15,14)(14, 13)(13,12)(12, 11)(11,10)(10, 9)(9,8)(8,7)(7.6)(6,5) (5, 4)(4, 3)(3,2)(7, 2)(8,7)(9, 8)(10, 9)
(11,10)(12,11)(13,12)(14, 13)(15, 14)(16, 15) = (6,5,4,3,2)

me = (16,15)(15,14)(14,13)(13,12)(12, 11)(11,10)(10,9)(9,8)(8,7)(7.6)(6.5)(5. 4)(4. 3)(6,3)(7, 6)(8, 7)(9, 8)(10, 9)
(11,10)(12,11)(13,12)(14,13)(15, 14)(16, 15) = (5,4, 3)

mit = (16,9)(10,9)(11,10)(12, 11)(13, 12)(14, 13)(15, 14)(16, 15) = (9,10, 11,12, 13, 14, 15)

my ' = (16.15)(15,10)(11,10)(12,11)(13,12)(14,13)(15, 14)(16, 15) = (10,11, 12, 13, 14)

mz ' = (16,15)(15,14)(14,11)(12, 11)(13,12)(14, 13)(15, 14) (16, 15) = (11,12, 13))

my = (16,15)(15,14)(14,13)(13,12)(12,5)(6,5)(7,6)(8,7)(9,8)(10,9)(11,10)(12, 11)(13, 12)(14, 13)(15, 14) (16, 15) =
(5,6,7,8,9,10,11)

mg L = (16,15)(15, 14)(14,13)(13,12)(12, 11)(11,6)(7,6)(8,7)(9, 8)(10,9)(12, 11)(13, 12)(14, 13) (15, 14) (16, 15)
= (6,7,8,9,10)

mgl = (l(’i, 15>(715.714>(714.713)<1 lZ)(l) 11)( >(10 7)(8,7)(9,8)(10,9)(11,10)(12,11)(13, 12)(14, 13)(15,14)(16,15)
= (778’9)

312) (12, 11)(11,10)(10,9)(9.8)(8,1)(2, 1)(3,2)(4, 3)(5,4)(6,5)(7, 6)(8,7)(9, 8)(10, 9)
15,14)(16,15) = (1,2,3,4,5,6,7)

mg' = (16,15)(15,14)(14, 13 11)(11,10)(10,9)(9.8)(8.7)(7,2)(3,2)(4, 3)(5,4)(6,5)(7,6)(8,7)(9, 8)(10, 9)
(11,10)(12,11)(13, 12)(14, 13)(15, 14)(16, 15) = (2,3,4,5,6)

mgt = (16,15)(15, 14) (14, 13)(13,12)(12, 11) (11, 10)(10,9)(9,8)(8, 7)(7,6)(6, 3) (4, 3)(5,4) (6, 5)(7, 6)(8, 7)(9, 8) (10, 9)
(11,10)(12,11)(13,12)(14, 13)(15, 14)(16, 15) = (3,4, 5)
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